本文目录
- Java7 ConcurrentHashMap
- Java8 ConcurrentHashMap
Java7 ConcurrentHashMap
采用分段锁+数组+链表的数据结构
线程不安全的HashMap
因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。
效率低下的HashTable容器
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。
锁分段技术
HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁。这里“按顺序”是很重要的,否则极有可能出现死锁,因此在ConcurrentHashMap内部,段数组是final的,并且其成员变量实际上也是final的,但是,仅仅是将数组声明为final的并不保证数组成员也是final的,这需要实现上的保证。这可以确保不会出现死锁,因为获得锁的顺序是固定的。
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。
ConcurrentHashMap(1.7及之前)中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点),对应上面的图可以看出之间的关系
1 | /** |
不变(Immutable)和易变(Volatile)
ConcurrentHashMap完全允许多个读操作并发进行,读操作并不需要加锁。如果使用传统的技术,如HashMap中的实现,如果允许可以在hash链的中间添加或删除元素,读操作不加锁将得到不一致的数据。ConcurrentHashMap实现技术是保证HashEntry几乎是不可变的。HashEntry代表每个hash链中的一个节点,其结构如下所示:
1 | static final class HashEntry<K,V> { |
可以看到除了value不是final的,其它值都是final的,这意味着不能从hash链的中间或尾部添加或删除节点,因为这需要修改next 引用值,所有的节点的修改只能从头部开始。对于put操作,可以一律添加到Hash链的头部。但是对于remove操作,可能需要从中间删除一个节点,这就需要将要删除节点的前面所有节点整个复制一遍,最后一个节点指向要删除结点的下一个结点。这在讲解删除操作时还会详述。为了确保读操作能够看到最新的值,将value设置成volatile,这避免了加锁。
定位段和每个段中的槽
为了加快定位段以及每个段中hash槽的速度,每个段的hash槽的个数都是2^n,这使得通过位运算就可以定位段和段中hash槽的位置。当并发级别为默认值16时,也就是段的个数,hash值的高4位决定分配在哪个段中。但是我们也不要忘记《算法导论》给我们的教训:hash槽的的个数不应该是 2^n,这可能导致hash槽分配不均,这需要对hash值重新再hash一次。
1 | // 根据key的 hash 值找到 Segment 数组中的位置 j |
既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过哈希算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再哈希。
再哈希,其目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。
重要参数
concurrencyLevel:并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。
initialCapacity:初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
loadFactor:负载因子,之前我们说了,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的。
初始化
ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个Segment中HashEntry数组的大小cap,并初始化Segment数组的第一个元素
其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,最终结果根据根据初始化容量initialCapacity进行计算
初始化完成,我们得到了一个 Segment 数组。我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:
- Segment 数组长度为 16,不可以扩容
- Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
- 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
- 当前 segmentShift 的值为 32 - 4 = 28,segmentMask 为 16 - 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到
put实现
当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:
场景:线程A和线程B同时执行相同Segment对象的put方法
- 线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
- 线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
- 当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行
get 过程
相对于 put 来说,get 真的不要太简单。
- 计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
- 槽中也是一个数组,根据 hash 找到数组中具体的位置
- 到这里是链表了,顺着链表进行查找即可
size实现
因为ConcurrentHashMap是可以并发插入数据的,所以在准确计算元素时存在一定的难度,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:
先采用不加锁的方式,连续计算元素的个数,最多计算3次:
- 如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
- 如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;
putIfAbsent方法的使用以及返回值的含义
putIfAbsent方法主要是在向ConcurrentHashMap中添加键—值对的时候,它会先判断该键值对是否已经存在。
- 如果不存在(新的entry),那么会向map中添加该键值对,并返回null。
- 如果已经存在,那么不会覆盖已有的值,直接返回已经存在的值。
Java8 ConcurrentHashMap
1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,采用数组+链表+红黑树的数据结构
只有在执行第一次put方法时才会调用initTable()初始化Node数组
初始化
构造方法如下:
1 | // 这构造函数里,什么都不干 |
这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,11x1.5+1=17.5, 向上取2的n次方,得到 sizeCtl 为 32。
put过程
- 得到key的hash值,然后进行死循环,其中有如下四个if语句块
- 先判断table数组是否为空,为空则初始化,再次循环
- 通过hash值找到数组table对应下标处的节点,然后判断是否为空,如果为空,则通过CAS放入即可,CAS成功然后put方法就算执行成功了,CAS失败那就是有并发操作,break进到下一个循环
- 判断hash是否为MOVED值,是则帮助数据迁移
- 最后的else, 到这里就是说,hash对应的数组table下标位置已经存在头节点f,而且不为空,用synchronized获取数组该位置的头结点的监视器锁,之后判断该位置是链表,还是红黑树,进行相应的插入或更新节点操作,之后会判断是否要将链表转换为红黑树或扩容数组,如果当前数组的长度小于 64,那么会选择进行数组扩容,之后再出现数组某下标处的链表节点数超过8个,会将其转换为红黑树。
get过程
- 计算 hash 值
- 根据 hash 值找到数组对应位置: (n - 1) & h
- 根据该位置处结点性质进行相应查找
- 如果该位置为 null,那么直接返回 null 就可以了
- 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
- 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法
- 如果以上 3 条都不满足,那就是链表,进行遍历比对即可
size实现
1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount
https://www.cnblogs.com/ITtangtang/p/3948786.html