NP-08-Buffer操作

Buffer

Buffer实现

  • ByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer
  • MappedByteBuffer

这些Buffer覆盖了你能通过IO发送的基本数据类型:byte, short, int, long, float, double 和 char。MappedByteBuffer,用于表示内存映射文件。

三个属性

  • capacity: 作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。
  • position: 当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1。当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式,position会被重置为0. 当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。
  • limit: 在写模式下,Buffer的limit表示你最多能往Buffer里写多少数据。 写模式下,limit等于Buffer的capacity。当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)

向Buffer中写数据有两种方式

  1. 从Channel写到Buffer。
  2. 通过Buffer的put()方法写到Buffer里。

从Buffer中读取数据有两种方式

  1. 从Buffer读取数据到Channel。
  2. 使用get()方法从Buffer中读取数据。

flip()方法

flip方法将Buffer从写模式切换到读模式。调用flip()方法会将position设回0,并将limit设置成之前position的值。

换句话说,position现在用于标记读的位置,limit表示之前写进了多少个byte、char等 —— 现在能读取多少个byte、char等。

rewind()方法

Buffer.rewind()将position设回0,所以你可以重读Buffer中的所有数据。limit保持不变,仍然表示能从Buffer中读取多少个元素(byte、char等)。

clear()与compact()方法

一旦读完Buffer中的数据,需要让Buffer准备好再次被写入。可以通过clear()或compact()方法来完成。

如果调用的是clear()方法,position将被设回0,limit被设置成 capacity的值。换句话说,Buffer 被清空了。Buffer中的数据并未清除,只是这些标记告诉我们可以从哪里开始往Buffer里写数据。

如果Buffer中有一些未读的数据,调用clear()方法,数据将“被遗忘”,意味着不再有任何标记会告诉你哪些数据被读过,哪些还没有。

如果Buffer中仍有未读的数据,且后续还需要这些数据,但是此时想要先先写些数据,那么使用compact()方法。

compact()方法将所有未读的数据拷贝到Buffer起始处。然后将position设到最后一个未读元素正后面。limit属性依然像clear()方法一样,设置成capacity。现在Buffer准备好写数据了,但是不会覆盖未读的数据。

mark()与reset()方法

通过调用Buffer.mark()方法,可以标记Buffer中的一个特定position。之后可以通过调用Buffer.reset()方法恢复到这个position。例如:

1
2
3
4
5
buffer.mark();

//call buffer.get() a couple of times, e.g. during parsing.

buffer.reset(); //set position back to mark.

基本操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// 1 基本操作
//创建指定长度的缓冲区
IntBuffer buf = IntBuffer.allocate(10);
buf.put(13);// position位置:0 - > 1
buf.put(21);// position位置:1 - > 2
buf.put(35);// position位置:2 - > 3
//把位置复位为0,也就是position位置:3 - > 0
buf.flip(); //limit=position, position=0,准备开始读
System.out.println("使用flip复位:" + buf);
System.out.println("容量为: " + buf.capacity()); // 10, 容量一旦初始化后不允许改变(warp方法包裹数组除外)
System.out.println("限制为: " + buf.limit()); // 3, 由于只装载了三个元素,所以可读取或者操作的元素为3 则limit=3


//绝对操作不影响position
System.out.println("获取下标为1的元素:" + buf.get(1)); //21
System.out.println("get(index)方法,position位置不改变:" + buf);
buf.put(1, 4);
System.out.println("put(index, change)方法,position位置不变:" + buf);;

for (int i = 0; i < buf.limit(); i++) {
//调用get方法会使其缓冲区位置(position)向后递增一位
System.out.print(buf.get() + "\t");
}
System.out.println("buf对象遍历之后为: " + buf);

warp方法的使用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// 2 wrap方法使用

// wrap方法会包裹一个数组: 一般这种用法不会先初始化缓存对象的长度,因为没有意义,最后还会被wrap所包裹的数组覆盖掉。
// 并且wrap方法修改缓冲区对象的时候,数组本身也会跟着发生变化。
int[] arr = new int[]{1,2,5};
IntBuffer buf1 = IntBuffer.wrap(arr);
System.out.println(buf1);

IntBuffer buf2 = IntBuffer.wrap(arr, 0 , 2);
//这样使用表示容量为数组arr的长度,但是可操作的元素只有实际进入缓存区的元素长度
System.out.println(buf2);

for(int i=0; i<buf1.limit(); i++){
System.out.print(buf1.get() + "\t");
}
System.out.println(buf1);

/*for(int i=0; i<buf2.limit(); i++){
System.out.print(buf2.get() + "\t");
}
System.out.println(buf2);*/

其他方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
      // 3 其他方法
IntBuffer buf1 = IntBuffer.allocate(10);
int[] arr = new int[]{1,2,5};
buf1.put(arr);
System.out.println(buf1);

//一种复制方法
IntBuffer buf3 = buf1.duplicate();
System.out.println(buf3);

//设置buf1的位置属性
//buf1.position(1);
buf1.flip();
System.out.println(buf1);

System.out.println("可读数据为:" + buf1.remaining());

int[] arr2 = new int[buf1.remaining()];

//将缓冲区数据放入arr2数组中去
buf1.get(arr2);
for(int i : arr2){
System.out.print(Integer.toString(i) + ",");
}